

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Deep Learning lectures

Here is the material for a course of two-weeks I will be giving in a Master of Data Science and AI

This is part of a series of other lectures modules on

	[Introduction to Data Science](https://oscar-defelice.github.io/DSAcademy-lectures) 🧮

	[Statistical Learning](https://oscar-defelice.github.io/ML-lectures) 📈

	[Time Series](https://oscar-defelice.github.io/TimeSeries-lectures) ⌛

	[Computer Vision Hands-On](https://oscar-defelice.github.io/Computer-Vision-Hands-on) 🕶️

	[Recommender Systems](https://oscar-defelice.github.io/Recommender-Systems-Course) 🚀

—

	<p align=”center”>
	

</p>

—

[Content of lectures](https://oscar-defelice.github.io/DeepLearning-lectures/src)

You can find the list of the arguments and some relevant material [here](https://oscar-defelice.github.io/DeepLearning-lectures/src).

	<p align=”center”>
	

</p>

—

Install requirements

As usual, it is advisable to create a virtual environment to isolate dependencies.
One can follow [this guide](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/) and the suitable section according to the OS.

Once the virtual environment has been set up, one has to run the following instruction from a command line

`bash
pip install -r requirements.txt
`

This installs all the packages the code in this repository needs.

Mac M1 processors

For new Apple M1 processors, there is a different requirement file.
So set the virtual environment and then the command to execute is

`bash
pip install -r requirements-macm1.txt
`

This installs all the packages the code in this repository needs.

Interact with notebooks

Binder

You can use _Binder_, to interact with notebooks and play with the code and the exercises.

<p align=”center”>

</p>

DeepNote

Alternatively, you can work on these notebooks in another online workspace called [Deepnote](https://www.deepnote.com/). This allows you to play around with the code and access the assignments from your browser.
<p align=”center”>

</p>

Run lectures in a Docker container

	<p align=”center”>
	

</p>

Another option to run all these lectures locally is to build the corresponding Docker Image.
A nice introduction to Docker containers can be found [here](https://www.youtube.com/watch?v=JprTjTViaEA).

We tried to modularise everything to make all the building and execution procedure as simple as possible.
To run a jupyter environment with all dependencies installed and notebooks ready to be executed it is sufficient to open your favourite terminal and run

`bash
make
`

The Makefile will take care of building and executing the docker image.
Then a jupyter server will be running at http://localhost/8888.

—

Your lecturer 👨‍🏫
[Oscar de Felice](https://oscar-defelice.github.io/)

![Oscar](https://oscar-defelice.github.io/images/OscarAboutMe.png)

I am a theoretical physicist, a passionate programmer and an AI curious.

I write medium articles (with very little amount of regularity), you can read them [here](https://oscar-defelice.medium.com/).
I also have a [github profile](https://github.com/oscar-defelice) where I store my personal open-source projects.

📫 [Reach me!](mailto:oscar.defelice@gmail.com)

[![github](https://img.shields.io/badge/GitHub-100000?style=plastic&logo=github&logoColor=white)](https://github.com/oscar-defelice)
[![Website](https://img.shields.io/badge/oscar–defelice-oscar-orange?style=plastic&logo=netlify&logoColor=informational&link=oscar-defelice.github.io)](https://oscar-defelice.github.io [https://img.shields.io/badge/oscar--defelice-oscar-orange?style=plastic&logo=netlify&logoColor=informational&link=oscar-defelice.github.io)](https://oscar-defelice.github.io])
[![Twitter Badge](https://img.shields.io/badge/-@OscardeFelice-1ca0f1?style=plastic&labelColor=1ca0f1&logo=twitter&logoColor=white&link=https://twitter.com/oscardefelice)](https://twitter.com/OscardeFelice)
[![Linkedin Badge](https://img.shields.io/badge/-oscardefelice-blue?style=plastic&logo=Linkedin&logoColor=white&link=https://linkedin.com/in/oscar-de-felice-5ab72383/)](https://linkedin.com/in/oscar-de-felice-5ab72383/)

Questions

	<p align=”center”>
	

</p>

If you have any question, doubt or if you find mistakes, please open an issue or drop me an [email](mailto:oscar.defelice@gmail.com).

Buy me a coffee ☕️

If you like these lectures, consider to buy [me a coffee ☕️](https://github.com/sponsors/oscar-defelice)!

	<p align=”center”>
	

</p>

—

<p align=”left”>

</p>

	<p align=”center”>
	

</p>

Jupyter Notebook cheatsheet

In this article, I will walk you through some simple tricks on how to improve your experience with Jupyter Notebook. We will start from useful shortcuts and we will end up adding themes, automatically generated table of contents.

Introduction

As you know, Jupyter Notebook is a client-server application used for running notebook documents in the browser. Notebook documents are documents able to contain both code and rich text elements such as paragraphs, equations, etc…

Jupyter Notebook is nowadays probably the most used environment for solving Machine Learning/Data Science tasks in Python.
Although it is a good debug and experiment environment and allows many nice things from the point of view of visualisation (code documentation, inline graphs, etc.), you have to keep in mind, Jupyter Notebook is __not__ a development environment.

The main reason for this is the fact that notebooks have tons and tons of hidden state that is easy to screw up and difficult to reason about. This makes notebook really difficult to debug and to version efficiently.

It is true that nowadays there are tools out there (_e.g._ [Ploomber](https://blog.jupyter.org/ploomber-maintainable-and-collaborative-pipelines-in-jupyter-acb3ad2101a7?gi=ed373e9ae21a)) able to make you use your notebook to build pipelines and put those in production, however, my feeling is that these great tools are more a workaround such that people do not have to fix their bad habits.

Just to have a reference, there is [this nice presentation](https://docs.google.com/presentation/d/1n2RlMdmv1p25Xy5thJUhkKGvjtV-dkAIsUXP-AL4ffI/edit#slide=id.g38857eff70_0_0) at the Jupyter Conference 2018 that collects a lot of well known Jupyter notebooks environment problems.

However, since these lectures are _demanded_ to be on jupyter notebooks, let’s start by getting the max out of it.

Commandments

	You will always use notebook responsibly, _i.e._ you never execute a notebook you do not understand just to get to the end.

	You will always run cells in order, if you need to rerun a previous cell, _always_ restart the kernel.

	You will always prefer jupyterlab to jupyter-notebook.

Shortcuts

Shortcuts can be really useful to speed up writing and executing your code, I will now walk you through some of the shortcuts I found most useful to use in Jupyter.

There are two possible way to interact with Jupyter Notebook: __Command Mode__ and __Edit Mode__.

Some shortcuts works only on one mode or another while others are common to both modes.

Common shortcuts

Some shortcuts which are common in both modes are:

	__Ctrl + Enter__ : to run all the selected cells;

	__Shift + Enter__ : run the current cell and move the next one;

	__Ctrl + s__ : save notebook.

Command mode shortcuts

In order to enter Jupyter command mode, we need to press _Esc_ and then any of the following commands, the cell selection will change colour (which one depends on you theme):

	__H__ : show all the shortcuts available in Jupyter Notebook

	__Shift + Up/Down Arrow__ : to select multiple notebook cells at the same time (pressing enter after selecting multiple cells, will make run all of them!);

	__A__ : insert a new cell above;

	__B__ : insert a new cell below;

	__X__ : cut the selected cells;

	__Z__ : undo the deletion of a cell;

	__Y__ : change the type of cell to Code;

	__M__ : change the type of cell to Markdown;

	__Space__ : scroll notebook down;

	__Shift + Space__ : scroll notebook up.

Edit mode shortcuts

In order to instead enter Jupyter edit mode, we need to press Enter and successively any of the following commands:

	__Tab__ : code completition suggestions;

	__Ctrl +]__ : indent code;

	__Ctrl + [__ : dedent code;

	__Ctrl + z__ : undo;

	__Ctrl + y__ : redo;

	__Ctrl + a__ : select all;

	__Ctrl + Home__ : move cursor to cell start;

	__Ctrl + End__ : move cursor to the end of the cell;

	__Ctrl + Left__ : move cursor one word left;

	__Ctrl + Right__ : move cursor one word right.

Jupyter Themes

If you are interested in changing how your Jupyter notebook looks like, it is possible to install a package with a collection of different themes. The default Jupyter theme looks like the one in Figure 1, in Figure 2 you will see how we will be able to personalise its aspect.

	<p align=”center”>
	

</p>

You can install a theme package by running in a shell (or in a magic cell in a terminal)

`bash
pip install jupyterthemes
`

and to see the themes available,

`bash
jt -l
`

Finally, we can choose a theme using the following command (in this example I decided to use the solarizedl theme):

`bash
jt -t solarizedl
`

If you want to come back to your original theme, it is sufficient to run,

`bash
jt -r
`

Jupyter Notebook Extensions

Notebook extensions can be used to enhance user experience offering a wide variety of personalizations techniques.

In this example, I will be using the nbextensions library in order to install all the necessary widgets. Such library makes use of different Javascript models in order to enrich the notebook frontend.

`bash
pip install jupyter_contrib_nbextensions
jupyter contrib nbextension install --system
`

Once nbextensions is installed you will notice that there is an extra tab on your Jupyter notebook homepage.

	<p align=”center”>
	

</p>

By clicking on the _Nbextensions_ tab, we will be provided with a list of available widgets.
In my case, I decided to enable the ones shown below.

	<p align=”center”>
	

</p>

Some of my favourite extensions are:

> Table of Contents

Auto-generate a table of contents from markdown headings.

	<p align=”center”>
	

</p>

> Snippets

Sample codes to load common libraries and create sample plots which you can use as starting point for your data analysis

	<p align=”center”>
	

</p>

> Hinterland

Code autocompletion for Jupyter Notebooks.

	<p align=”center”>
	

</p>

The nbextensions library provides many other extensions apart for these mentioned here, I encourage you to experiment and test any-other which can be of interest for you.

Markdown Options

By default, the last output in a Jupyter Notebook cell is the only one that gets printed (There is an implicit display() command).

Additionally, it is possible to write LaTex in a Markdown cell by enclosing the text between dollar signs ($).

Notebook Slides

It is possible to create a slideshow presentation of a Jupyter Notebook by going to View -> Cell Toolbar -> Slideshow and then selecting the slides configuration for each cell in the notebook.

Finally, going to the terminal and typing the following commands the slideshow will be created.

`bash
pip install jupyter_contrib_nbextensions
jupyter nbconvert my_notebook_name.ipynb --to slides --post serve
`

	<p align=”center”>
	

</p>

Cell Magic

Magics are commands which can be used to perform specific commands. Some examples are: inline plotting, printing the execution time of a cell, printing the memory consumption of running a cell, etc…

Magic commands which starts with just one % apply their functionality just for one single line of a cell (where the command is placed). Magic commands which instead starts with two %% are applied to the whole cell.

It is possible to print out all the available magic commands by using the following command,

`python
%lsmagic
`

 # Lecture Plan

Here we describe the lecture plan and insert the link to the corresponding material.

—

[Meta-Introduction](JupyterTricks.md)

A couple of tricks and advices about jupyter-notebook envirornment.

[Introduction](https://github.com/oscar-defelice/DeepLearning-lectures/blob/master/src/01.IntroductionToDeepLearning.ipynb) 🎒

Here we collect the introductory arguments for this course. In this lecture, we review some basic concepts in machine learning, like model construction and logistic regression.

Hence, we illustrate the general working scheme of an _Artificial Neural Network_, building an instance of such a model making use of the only numpy.

Hence, we show a first example of predictive model making use of neural network.
Finally, we give some references and instructions to follow and execute these lectures.

[Binary Classification](https://github.com/oscar-defelice/DeepLearning-lectures/blob/master/src/02.BinaryClassificationKeras.ipynb) 🛤️

In this section we introduce a binary classification of images.
We will build a deep network, and apply it to cat vs non-cat classification.

[Error Metrics](https://github.com/oscar-defelice/DeepLearning-lectures/blob/master/src/03.ErrorMetrics.ipynb) 🌊

This module is about error metrics.

In particular, we focus on the definition of different metrics and when these are suitable to use, looking at several examples.

[Optimisation](https://github.com/oscar-defelice/DeepLearning-lectures/blob/master/src/04.OptimisationKeras.ipynb) 🦾

At this stage, our Deep Learning knowledge is mature enough to wonder how to measure model performances and how to solve the possible issues arising.
We review the crucial concepts of _underfit_ and _overfit_ and how to face such problems that may afflict models.
Furthermore, we introduce specific Deep Learning techniques to handle such issues.

[Error Analysis](https://github.com/oscar-defelice/DeepLearning-lectures/blob/master/src/05.ErrorAnalysis.ipynb) 👨‍🏫

We introduce an important concept in the general lifecycle of a Data Science model.
Error analysis is a crucial activity in order to improve machine learning models.

[Sequence Models](https://github.com/oscar-defelice/DeepLearning-lectures/blob/master/src/06.SequenceModels.ipynb) 🦿

Here we introduce RNNs and sequence models.
We are going to explore the several architectures and the cases where these are useful.
We will introduce NLP and Time Series applications.

[Transfer Learning](https://github.com/oscar-defelice/DeepLearning-lectures/blob/master/src/07.TransferLearning.ipynb) 🔧

This lecture is aimed to introduce one of the main motivations of the deep learning success, _i.e._ how a network trained on a task can actually take advantage of the previous acquired knowledge to perform better on another task.

[Convolutional Neural Networks](https://github.com/oscar-defelice/DeepLearning-lectures/blob/master/src/09.ConvolutionalNNKeras.ipynb) 🖼️

In these couple of lectures we introduce and develop Convolutional Neural Networks.
The idea is to study the most famous CNN architectures and apply them to the principal image tasks:

	Image classification

	Image recognition

	Object detection

[Transformer models]() 🤖

In this lecture, we face one of the Deep Learning model that revolutionised the field of AI.

We will start by the famous paper [_Attention is all you need_](https://arxiv.org/abs/1706.03762) in order to understand how this work is crucial not only for NLP but also for the whole Deep Learning field.

Advanced Topics 🧪

As advanced topics, we focus on techniques and advanced model combinations.
In particular a non-exhaustive list of arguments will include:

	[Tensorflow JS and how to deploy models](https://github.com/oscar-defelice/DeepLearning-lectures/tree/master/src/TFJS)

	[Federated Learning and data protection](https://github.com/oscar-defelice/DeepLearning-lectures/blob/master/src/13.Federated_Learning.ipynb)

[Final project](https://github.com/oscar-defelice/DeepLearning-lectures/blob/master/src/FinalProject/FinalProject.ipynb) 🚧

The proposed final project is an application of what we have seen in the course of the lectures.

The idea is to build a whole pipeline from data collection to prediction and possibly deploy our model on a webapp.

 # Tensorflow.js Examples

Here we show how to train and then deploy a model in a webapp.
We build a simple html page where we serve our model thanks to a JavaScript code.

Installation
The key package to install is tensorflowjs. In a virtual env, one can install it simply by,
`bash
pip install tensorflowjs
`

Examples

Cat-vs-Dog classifier
The first example we build is a classic in computer vision: cat-vs-dog classifier.
1. [We use a notebook to train the model](https://github.com/oscar-defelice/DeepLearning-lectures/blob/master/TFJS/Example-CatVsDog/TFJS-trainModel.ipynb)
2. [We build a webapp to deploy our model](https://github.com/oscar-defelice/DeepLearning-lectures/blob/master/TFJS/Example-CatVsDog/index.html).

Rock-Paper-Scissors game
Another example is the famous Rock-Paper-Scissor game, that is in principle very similar, but now we fine-tune the model directly in JavaScript and we train with live images from webcam.

![image](https://user-images.githubusercontent.com/49638680/115159438-60d2da80-a093-11eb-806d-7f0c2374a74f.png)

Bonus I
I put here another example recognising hand gestures [here](https://github.com/oscar-defelice/handgesture.github.io),
while the relative code can be found at this [repo link](https://oscar-defelice.github.io/handgesture.github.io/).

![hand](https://user-images.githubusercontent.com/49638680/114884954-7b445400-9e06-11eb-89d2-fe0c92962781.png)

Bonus II

You can play PacMan with your webcam!

![image](https://user-images.githubusercontent.com/49638680/115876770-02b54700-a447-11eb-869b-6a0ce8978585.png)

[🕹️ Enjoy!](https://storage.googleapis.com/tfjs-examples/webcam-transfer-learning/dist/index.html)

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/plus.png

_static/file.png

_static/minus.png

